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Control of Gene Expression

Gary S. Stein,* Jane B. Lian, Janet L. Stein, André J. van Wijnen, Martin Montecino, Amjad Javed,
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Abstract The architecturally associated subnuclear organization of nucleic acids and cognate regulatory factors
suggest functional interrelationships between nuclear structure and gene expression. Mechanisms that contribute to the
spatial distribution of transcription factors within the three-dimensional context of nuclear architecture control the sorting
of regulatory information as well as the assembly and activities of sites within the nucleus that support gene expression.
Vitamin D control of gene expression serves as a paradigm for experimentally addressing mechanisms that govern the
intranuclear targeting of regulatory factors to nuclear domains where transcription of developmental and tissue-specific
genes occur. We will present an overview of molecular, cellular, genetic, and biochemical approaches that provide
insight into the trafficking of regulatory factors thatmediate vitaminDcontrol of gene expression to transcriptionally active
subnuclear sites. Exampleswill be presented that suggestmodifications in the intranuclear targeting of transcription factors
abrogate competency for vitaminDcontrol of skeletal gene expressionduringdevelopment andfidelity of gene expression
in tumor cells. J. Cell. Biochem. 88: 340–355, 2003. � 2002 Wiley-Liss, Inc.
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THE REQUIREMENTS FOR PHYSIOLOGICAL
CONTROL OF SKELETAL GENE

EXPRESSION IN VIVO

Bone formation during development and
skeletal remodeling throughout life requires
the complex and interdependent expression of
cell growth and phenotypic genes [reviewed in
Bilezikian et al., 2002; Stein et al., 2002]. There
is a requirement for responsiveness to a broad

spectrum of regulatory cues that transduce
physiological signals from the extracellular
matrix to sites within the nucleus where genes
that mediate skeletogenesis reside [Stein et al.,
1997; Lian and Stein, 1999; Xiao et al., 2002;
Zaidi et al., 2002b]. As our understanding of
generegulatorymechanismsexpand, itbecomes
increasingly evident that there are unique
parameters of transcriptional control that sup-
port the transient activation and suppression of
genes for skeletal development and bone home-
ostasis.Othermechanisms are invoked for long-
termobligations to gene expression that sustain
the specialized properties of bone cells. Vitamin
D serves as a principal modulator of skeletal
gene transcription necessitating an under-
standing of interfaces between activity of this
steroid hormone with regulatory cascades that
are functionally linked to the activity of skeletal
genes [Lian et al., 1999].

There is growing appreciation for the reper-
toire of factors that influence gene expression
for commitment to the osteoblast lineage. It is
well documented that sequentially expressed
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genes support progression of osteoblast differ-
entiation through developmental transition
points where responsiveness to phos-
phorylation-mediated regulatory cascades
determine competency for establishing and
maintaining the structural and functional
properties of bone cells [Aubin and Liu, 1996;
Lian and Stein, 1999; Schinke and Karsenty,
2002; Stein et al., 2002].However, the catalogue
of promoter elements and cognate regulatory
proteins that govern skeletal gene expression
offer essential but insufficient insight into
mechanisms that are operative in vivo. Gene
promoters serve as regulatory infrastructure by
functioning as blueprints for responsiveness to
the flow of cellular regulatory signals. But to
access the specific genetic information necessi-
tates understanding transcriptional control of
skeletal genes within the contexts of the sub-
nuclear organization of nucleic acids and reg-
ulatory proteins. Explanations are required for:
(1) convergence of multiple regulatory signals
at promoter sequences; (2) the integration of
regulatory information at independent promo-
ter domains; (3) selective utilization of redun-
dant regulatory pathways; (4) thresholds for
initiation or downregulation of transcription
with limited intranuclear representation of
promoter elements and regulatory factors; (5)
mechanisms that render the promoters of cell
growth and phenotypic genes competent for
protein–DNAand protein–protein interactions
in a physiologically responsive manner; (6) the
composition, organization, andassemblyof sites
within the nucleus that support transcription;
and (7) the intranuclear trafficking of regula-
tory proteins to transcriptionally active foci.

GENE EXPRESSION WITHIN THE
THREE-DIMENSIONAL CONTEXT OF

NUCLEAR ARCHITECTURE: REQUIREMENTS
FOR BOUNDARIES AND DIRECTIONS

Evidence is accruing that the architectural
organization of nucleic acids and regulatory
proteins within the nucleus support functional
interrelationships between nuclear structure
and gene expression (Fig. 1). There is increasing
acceptance that components of nuclear archi-
tecture are functionally linked to the organiza-
tion and sorting of regulatory information in
a manner that permits selective utilization
[Berezney and Jeon, 1995; Berezney et al.,
1996; Zeng et al., 1997, 1998; Lamond and

Earnshaw, 1998; Ma et al., 1998, 1999; McNeil
et al., 1998, 1999; Stein et al., 2000a; Choi et al.,
2001; DeFranco, 2002; Gasser, 2002]. The
primary level of nuclear organization, the
representation and ordering of genes and
promoter elements, provide alternatives for
physiological control. The molecular organi-
zation of regulatory elements, the overlap of
regulatory sequenceswithinpromoter domains,
and the multipartite composition of regulatory
complexes increase options for responsiveness.
Chromatin structure and nucleosome organiza-
tion reduce distances between regulatory se-
quences, facilitate crosstalk between promoter
elements and render elements competent for
interactions with positive and negative regula-
tory factors [Bresnick et al., 1990, 1991; Archer
et al., 1991, 1992; Breen et al., 1994; Cairns
et al., 1994, 1996; Côté et al., 1994; Kwon et al.,
1994; Vettese-Dadey et al., 1994, 1996;
Tsukiyama and Wu, 1995; Bartsch et al., 1996;
Brownell et al., 1996; Wang et al., 1996a,b; Ito
et al., 1997; Ura et al., 1997; Varga-Weisz et al.,
1997; Cote et al., 1998; Imbalzano, 1998; Lorch
et al., 1998; Peterson et al., 1998; Schnitzler
et al., 1998; Chen et al., 1999; Montecino et al.,
1999; Gasser, 2002; Strahl et al., 2002]. The
components of higher order nuclear architec-
ture that includes nuclear pores [Blobel, 1995;
Ullman et al., 1997; Bangs et al., 1998; Mattaj
and Englmeier, 1998; Moroianu, 1999; Iborra
et al., 2000], the nuclear matrix and subnuclear
domains contribute to the subnuclear distribu-
tion and activities of genes and regulatory
factors [reviewed in Berezney and Jeon, 1995;
Penman, 1995; Misteli, 2000]. Compartmenta-
lization of regulatory complexes is illustrated by
focal organization of PML bodies [Dyck et al.,
1994; Weis et al., 1994; Grande et al., 1996;
Melnick and Licht, 1999], Runx bodies [Aubin
and Liu, 1996; Zeng et al., 1997; McNeil et al.,
1999;Harringtonetal., 2002; Javed etal., 2000],
the nucleolus, chromosomes [Ma et al., 1999] as
well as by the punctate intranuclear distri-
bution of sites for replication [Leonhardt et al.,
1998; Wei et al., 1998; Cook, 1999], DNA
repair, transcription [Ciejek et al., 1983; Guo
et al., 1995; Merriman et al., 1995; van Steensel
et al., 1995; Htun et al., 1996; McNeil et al.,
1998; Stenoien et al., 1998; Tang et al., 1998b;
Cook, 1999; Kimura et al., 1999; Verschure
et al., 1999; Wei et al., 1999] and the processing
of gene transcripts [Misteli and Spector, 1999;
Smith et al., 1999; Misteli, 2000]. There is
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emerging recognition that nuclear structure
and function are causally interrelated. With
mounting evidence for organization of nucleic
acids and regulatory proteins into subnuclear
domains that are associatedwith components of
nuclear architecture, the perception of a dichot-
omy between nuclear architecture and control
of gene expression is difficult to justify. Rather,
the challenges are to design experiments to
define mechanisms that direct genes and reg-
ulatory factors to siteswithin thenucleuswhere
localization integrates regulatoryparameters of
gene expression and establish microenviron-
ments with boundaries between regulatory
complexes that are required for fidelity of
activity.

The bone-specific osteocalcin gene and skele-
tal-restricted RUNX2 (AML3/CBFA1/PEBP2a)
transcription factor serve as paradigms for
obligatory relationships between nuclear struc-
ture with physiological control of skeletal gene
expression [Merriman et al., 1995; Banerjee
et al., 1996, 1997; Ducy et al., 1997; Javed et al.,
1999, 2001] (Fig. 2). The modularly organized
promoter of the bone specific osteocalcin gene
contains proximal and distal regulatory ele-
ments that support basal, tissue-specific as well
as growth factor, homeodomain, signaling pro-
tein, and steroid hormone responsive transcrip-
tional control [reviewed in Demay et al., 1990;
Markose et al., 1990; Bortell et al., 1992;
Hoffmann et al., 1994; Tamura and Noda,

Fig. 1. Levels of chromatin architecture within nucleus. The
upper panel schematically illustrates sequential packaging of
DNA from a linear double helix to higher order chromatin
organization. The seven nucleotide Runx binding element is
shown. The lower panels schematically illustrate a loop domain.
Elements at the base of the loop structure designated matrix
attachment regions (MARs) [MARs, or alternatively locus control
regions (LCR), or scaffold attachment region (SCA)] mediate
association of these genomic domains with the nuclear matrix or
scaffold.Geneswithin the loop domain undergo local chromatin

remodeling to establish competency for protein–DNA and
protein–protein interactions that support transcriptional activa-
tion or suppression. The machinery for chromatin remodeling
includes ATP dependent and independent enzymes (e.g., SWI/
SNIF related proteins) and factors that mediate post-translational
modification of the histones (e.g., Histone acetyl transferases,
histone deacytalases, kinases, phosphatases, and methyalases).
The nuclear matrix provides anchorage for both nucleic acids
and regulatory as well as coregulatory factors that control
transcription.
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Fig. 2. Remodeling of the osteocalcin gene promoter during
developmental stages of osteoblast differentiation. Schematic
illustration of the inactive rat osteocalcin genewith nucleosomes
placed in the proximal tissue-specific and upstream enhancer
regionof thepromoter (panel A). Factors that support basal tissue-
specific transcription are recruited to the OC gene promoter and
are organized in the proximal and upstream promoter domains.
Modifications in chromatin structure that mediate assembly of
the regulatorymachinery for gene expression are reflected by the

nuclease hypersensitive sites (DHS). Positioned nucleosome
resides between the proximal basal and distal enhancer regions
of the promoter (panel B). In response to Vitamin D, chromatin
remodeling renders the upstream VDRE (vitamin D responsive
element) competent for binding the VDR/RXR heterodimer at its
cognate element (panel C). Higher order chromatin organization
permits cross talk between basal transcriptionmachinery and the
Vitamin D receptor complex that involves direct interactions of
the VitaminD receptorwith the TFIIB regulatory factor (panel D).
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1994; Ducy and Karsenty, 1995; Guo et al.,
1995; Merriman et al., 1995; Banerjee et al.,
1996; Bilezikian et al., 2002]. Modulation of
osteocalcin gene expression during bone forma-
tion and remodeling requires physiologically
responsive accessibility of these proximal and
upstreampromoter sequences to regulatory and
coregulatory proteins as well as protein–pro-
tein interactions that integrate independent
promoter domains. The RUNX transcription
factors contribute to the control of skeletal gene
expression by sequence-specific binding to pro-
moter elements of target genes and serving as
scaffolds for the assembly and organization of
coregulatory proteins that mediate biochemical
and architectural control of promoter activity.

Chromatin Remodeling Facilitates
Vitamin D-Mediated Promoter Accessibility

and Integration of Regulatory Activities

It is well recognized that genomic DNA is
packagedas chromatin.These ‘‘beadonastring’’
structures designated nucleosomes are structu-
rally remodeled to accommodate requirements
for transcription, emphasizing the extent to
which architectural organization of genes is
causally related to functional activity. The
identification and characterization of proteins
that catalyzehistone acetylation, deacetylation,
and phosphorylation [Bresnick et al., 1990,
1991; Georgieva et al., 1991; Brosch et al.,
1992; Lopez-Rodas et al., 1992; Toh et al.,
1994, 1997, 1999; Vettese-Dadey et al., 1994,
1996; Chen and Evans, 1995; Horlein et al.,
1995; Bartsch et al., 1996; Brownell et al., 1996;
Fondell et al., 1996; Lechner et al., 1996; Yang
et al., 1996; Ura et al., 1997; Cui et al., 1998;
Davie, 1998; Feng et al., 1998;Grant et al., 1998;
Janknecht et al., 1998; Laherty et al., 1998;
Lavinsky et al., 1998; Siddique et al., 1998;
Workman and Kingston, 1998; Zhang et al.,
1998; Zhou et al., 1998; Ayer, 1999; Kornberg
and Lorch, 1999; Montecino et al., 1999; Safadi
et al., 1999; Agalioti et al., 2000; Hassan et al.,
2001] as well as the SWI/SNF-related proteins
[Cairns et al., 1994, 1996;Cote et al., 1994, 1998;
Côté et al., 1994; Kwon et al., 1994; Tsukiyama
et al., 1994, 1999; Tsukiyama and Wu, 1995;
Wang et al., 1996a,b; Ito et al., 1997; Varga-
Weisz et al., 1997; Imbalzano, 1998; Lorch et al.,
1998; Peterson et al., 1998; Schnitzler et al.,
1998;WorkmanandKingston, 1998; de laSerna
et al., 2001] that facilitate chromatin remodel-

ing and potentially the accessibility of promoter
sequences to regulatory and coregulatory
factors, represent an important dimension in
control of the structural and functional activ-
ities of genes and promoter regulatory ele-
ments. Relationships of regulatory signaling
pathways to enhance activities that modulate
gene, chromatin, and chromosome organization
can now be directly investigated. Additional
levels of specificity are provided by structural
modifications of gene promoters that influence
competency for factor interactions. Simply
stated, changes in the architectural properties
of promoter elements determine effectiveness
of gene regulatory sequences as substrates
for interactions with regulatory factors. The
regulatory and regulated parameters of chro-
matin remodeling and the rate limiting steps
in the relevant signaling cascades are being
actively pursued and will unquestionably pro-
vide insight into skeletal gene regulatory
mechanisms from structural and functional
perspectives.

The chromatin organization of the osteocalcin
gene illustrates dynamic remodeling of a
promoter to accommodate requirements for
phenotype-related developmental and steroid
hormone responsive activity. Nuclease diges-
tion and ligation-mediated PCRanalysis aswell
as in vitro nucleosome reconstitution studies
establish the placement of nucleosomes in the
proximal basal/tissue specific domain and at the
upstream vitamin D responsive element, block-
ing accessibility of these promoter sequences
to regulatory proteins in immature bone cells
when this skeletal restricted gene is suppressed
[Breen et al., 1994; Montecino et al., 1994a,b,
1996, 1999]. In response to developmental and
skeletal regulatory signals the striking removal
of a nucleosome andmodifications in chromatin
structure renders the proximal promoter of the
OC gene accessible to regulatory and coregula-
tory proteins that support basal level activity
[Breen et al., 1994; Montecino et al., 1994a,b,
1996, 1999; Javed et al., 1999]. Vitamin D en-
hancement of osteocalcin gene transcription is
associated with removal of the nucleosome at
the upstream vitamin D responsive element
that permits binding of the vitamin D receptor-
RXRheterodimer [Breen et al., 1994;Montecino
et al., 1994a,b, 1996, 1999; Javed et al., 1999].
The retention of a nucleosome between the pro-
ximal and upstream enhancer domain reduces
distance between the basal and vitamin D
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responsive element and supports a promoter
configuration that is conducive to protein–
protein interactions between the vitamin D re-
ceptor and the basal TF2B transcription factor
[Blanco et al., 1995;MacDonald et al., 1995;Guo
et al., 1997]. Interaction of the vitamin D re-
ceptor at the distal promoter region of the bone
specific osteocalcin gene requires nucleosomal
remodeling [Paredes et al., 2002].
Thus, insight into control of skeletal gene

expression can be obtained from the under-
standing of mechanisms that alter osteocalcin
gene chromatin organization under biological
conditions. Site directed mutagenesis of osteo-
calcin genes that are genetically integrated in
stable cell lines have established that RUNX
elements flanking the proximal and upstream
promoter sequences are responsible for devel-
opmental and vitamin D-induced chromatin
remodeling [Javed et al., 1999]. Reduced CpG
methylation is associated with transcriptional
activation of the bone-specific osteocalcin gene
in osteoblasts [Villagra et al., 2002]. In vitro and
in vivo genetic approaches have demonstrated
that RUNX2 controls developmental and ster-
oid hormone-responsive chromatin reconfigura-
tion of the osteocalcin gene promoter [Javed
et al., 1999; Gutierrez et al., 2000a]. Chromatin
immunoprecipitation analyses have shown that
developmental and vitamin D-linked remodel-
ing of osteocalcin gene promoter organization is
accompanied by acetylation of histones in the
proximal basal and upstreamvitaminD respon-
sive element domains [Shen et al., 2002]. This
post-translational modification of histone pro-
teins reduces the tenacity of histone DNA
interactions in a manner that is conducive to
an open chromatin organization with increased
access to regulatory factors. The most compel-
ling evidence for a functional involvement
of chromatin organization in skeletal gene
expression is the obligatory relationship of
dynamic changes in the biochemical and struc-
tural properties of osteocalcin gene promoter
organization with competency for bone tissue-
restricted and enhanced transcription in re-
sponse to vitamin D [Javed et al., 1999]. Yet,
despite the cogent support for a central role of
chromatin remodeling in transcriptional con-
trol of the osteocalcin gene, there are open-
ended questions. It is not justifiable to extra-
polate from these findings to conclude that all
genes that are activated and suppressed during
skeletogenesis employ identical mechanisms.

From a broader biological perspective there are
multiple levels of control that must be mechan-
istically characterized to explain physiologi-
cally responsive regulation of chromatin
structure within restricted and global genomic
contexts.

Nuclear Microenvironments:
Accommodating the Rules That Govern

In Vivo Transcriptional Control

Key components of the basal transcription
machineryand several tissue-specific transcrip-
tion factor complexes are functionally compart-
mentalized as specialized subnuclear domains
[Robinson et al., 1982; Stief et al., 1989; Schaack
et al., 1990; Dworetzky et al., 1992; van Wijnen
et al., 1993; Htun et al., 1996; Banerjee et al.,
1997; Zeng et al., 1997, 1998, Bangs et al., 1998;
Lamond and Earnshaw, 1998; McNeil et al.,
1998; Stenoien et al., 1998; Tang et al., 1998b;
Kimura et al., 1999; McNeil et al., 1999; Misteli
and Spector, 1999; Wei et al., 1999; Stein et al.,
2000b; DeFranco, 2002]. Such compartmentali-
zation may, at least in part, accommodate
biological constraints on the control of tran-
scription in nuclei of intact bone cells. The
low representation of promoter regulatory ele-
ments and cognate transcription factors neces-
sitate a subnuclear organization of nucleic
acids and regulatory proteins that supports
threshold concentrations for the activation and
repression of gene expression. From an his-
torical perspective, compartmentalization of
the regulatory machinery for ribosomal genes
innucleoli and the organization of chromosomes
during mitosis provide paradigms for intra-
nuclear localization of genes and regulatory
complexes.

During the past several years there has been
growing recognition that the organization of
nucleic acids and regulatory proteins is func-
tionally linked to the assembly, organization,
and activity of gene regulatory machinery.
Cellular, molecular, biochemical, and genetic
evidence indicate an obligatory relationship
between sites within the nucleus where regula-
tory complexes reside and fidelity of transcrip-
tional control. The biological relevance for the
intranuclear distribution of regulatory com-
plexes is directly reflected by aberrant nuclear
structure-gene expression interrelationships
that are associated with perturbations in skele-
tal development [Choi et al., 2001] and leukemia
[McNeil et al., 1999].
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Intranuclear Trafficking of Skeletal Regulatory
Factors to Subnuclear Sites That Support
Transcription: ‘‘to be in the Right Place

at the Right Time’’

There is a need to gain insight into mechan-
isms that vectorially direct skeletal factors to
subnuclear sites where regulatory events occur.
Association of osteoblast, myeloid, and lym-
phoid RUNX transcription factors that mediate
tissue-specific transcription [Bae et al., 1993;
Meyers et al., 1993, 1995, 1996; Wang et al.,
1993; Nuchprayoon et al., 1994; Frank et al.,
1995;Merriman et al., 1995; Satake et al., 1995;
Banerjee et al., 1996, 1997; Ducy et al., 1997;
Zeng et al., 1997] with the nuclear matrix has
permitted direct examination of mechanisms
for targeting regulatory proteins to transcrip-
tionally active subnuclear domains. Both bio-
chemical and immunofluorescence analyses
have shown that RUNX transcription factors
exhibit a punctate nuclear distribution that is
associatedwith the nuclearmatrix in situ [Tang
et al., 1998a; Zeng et al., 1997, 1998; Zaidi et al.,
2002]. Taken together, these observations are
consistent with the concept that the nuclear
matrix is functionally involved in gene localiza-
tion and in the concentration and subnuclear
localization of regulatory factors [Dworetzky
et al., 1992; Bidwell et al., 1993; van Wijnen
et al., 1993;Blencowe et al., 1994;Mancini et al.,
1994; Stein et al., 1994, 1996, 1997; Nickerson
et al., 1995; Zeng et al., 1997].

The initial indication that nuclear matrix
association of RUNX factors is required for
maximal activity was provided by the observa-
tion that transcriptionally active RUNX pro-
teins associate with the nuclear matrix but
inactiveC-terminally truncatedRUNXproteins
do not [Zeng et al., 1997, 1998; Choi et al., 1999,
2001; Javed et al., 2000; Zaidi et al., 2001]
(Fig. 3). This localization of RUNX was estab-
lished by biochemical fractionation and in situ
immunofluorescence as well as by green fluor-
escent protein tagged RUNX proteins [Harring-
ton et al., 2002] in living cells. Colocalization of
RUNX1, 2, and 3 at nuclear matrix-associated
sites indicate a common intranuclear targeting
mechanism may be operative for the family of
RUNX transcription factors [Tang et al., 1998a;
Javed et al., 2000; Harrington et al., 2002].
Variations in the partitioning of transcription-
ally active and inactive RUNX between sub-
nuclear fractions permitted development of a

strategy to identify a region of the RUNX
transcription factors that directs the regulatory
proteins to nuclear matrix-associated foci. A
series of deletions and internal mutations was
constructed and assayed for competency to
associate with the nuclear matrix by Western
blot analysis of biochemically prepared nuclear
fractions and by in situ immuno staining
following transfection into intact cells. Associa-
tion of osteogenic and hematopoietic RUNX
proteinswith the nuclearmatrix is independent
of DNA binding and requires a nuclear matrix
targeting signal, a 31 amino acid segment near
the C-terminus that is distinct from nuclear
localization signals [Zeng et al., 1997]. The
nuclear matrix targeting signal functions auto-
nomously and is necessary as well as sufficient
to direct the transcriptionally active RUNX
transcription factors to nuclear matrix-asso-
ciated sites where gene expression occurs [Zeng
et al., 1997].

These findings indicatemechanisms involved
in the selective trafficking of proteins to specia-
lized domains within the nucleus where they
become components of functional regulatory
complexes. At least two trafficking signals ap-
pear to be required for subnuclear targeting of
RUNX transcription factors; the first supports
nuclear import (nuclear localization signal)
and a second mediates association with the
nuclear matrix (nuclear matrix targeting
signal). The multiplicity of determinants for
nuclear localization and alternative splicing of
RUNX messenger RNA may provide the requi-
site complexity to support targeting to specific
sites within the nucleus in response to diverse
biological conditions. Furthermore, because
gene expression by RUNX involves contribu-
tions by factors and coregulatory proteins that
include CBFb [Ogawa et al., 1993; Banerjee
et al., 1996],ETS-1 [Giese et al., 1995;Maoetal.,
1999; Xie et al., 1999] and C/EBP [Zhang et al.,
1996; Gutierrez et al., 2000b], Groucho/TLE
[Levanon et al., 1998; Javed et al., 2000], HES
and SMAD [Zaidi et al., 2002b; Zhang et al.,
2000], RUNX may facilitate recruitment of
these factors to the nuclear matrix.

Properties of transcriptionally active
subnuclear compartments. Association of
genes and cognate factors with the nuclear
matrix may support the formation and/or activ-
ities of nuclear domains that facilitate tran-
scriptional control [Guo et al., 1995; Merriman
et al., 1995; Nickerson et al., 1995; Berezney
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et al., 1996; Chen et al., 1996; Nardozza et al.,
1996; Spelsberg et al., 1996; Stein et al., 1996;
Alvarez et al., 1997; Davie, 1997; Grande et al.,
1997; Jackson, 1997; Lindenmuth et al., 1997].
Results from our laboratory indicate that the
association of RUNX transcription factors with
the nuclear matrix is obligatory for activity
[Zeng et al., 1998; Choi et al., 2001]. The pro-
moter recognition function of the runt homology
domain of RUNX, and thus the consequential
interactions with RUNX-responsive genes, is
essential for formation of transcriptionally
active foci containing RUNX and RNA polymer-
ase II that are nuclear matrix associated [Zeng
et al., 1998]. Additionally, the nuclear matrix-
targeting signal supports transactivation when
associated with an appropriate promoter, and
transcriptional activity of the nuclear matrix
targeting signal depends on association with
the nuclear matrix [Zeng et al., 1998]. Taken

together, targeting of RUNX transcription
factors to the nuclear matrix is important for
their function and transcription. However,
components of the nuclear matrix that function
as acceptor sites remain to be established.
Characterization of such nuclear matrix com-
ponents will provide an additional dimension to
characterizing molecular mechanisms asso-
ciated with gene expression—the targeting of
regulatory proteins to specific spatial domains
within the nucleus. An initial indication of
transcription factor interactions with the nu-
clear matrix is provided by crystal structure of
the RUNX nuclear matrix targeting signal that
was determined by X-ray diffraction analysis at
2.7 Å [Tang et al., 1998a].

Subnuclear targeting and integration of
signaling pathways. Gene expressionduring
skeletal development and bone remodeling is
controlled by a broad spectrum of regulatory

Fig. 3. The intranuclear trafficking signal of theRunx/AML/Cbfa
transcription factor supports targeting to punctate subnuclear
sites. The panel shows immunofluorescence and phase images of
the nuclear matrix intermediate filament preparations of cells
transfected with constructs encoding epitope tagged Runx
proteins that possesses or lack the intranuclear trafficking signal
(NMTS). The locationof the runt homologyDNAbindingdomain
(RHD) and nuclear import signal (NLS) in the N-terminal region

as well as the intranuclear trafficking signal (NMTS) that includes
a context-dependent transactivation domain in the C-terminal
region are indicated. The presence of the NLS and NMTS
supports nuclear import and trafficking of the Runx/AML
transcription factor to punctate nuclear matrix associated sites.
Deletion of the NMTS does not compromise nuclear import but
the truncated protein is not architecturally localized at nuclear
matrix-associated subnuclear sites.
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signals that converge at promoter elements to
activate or repress transcription in a physiolo-
gically responsive manner. The subnuclear
compartmentalization of transcription machin-
ery necessitates a mechanistic explanation for
directing signaling factor to sites within the
nucleus where gene expression occurs under
conditions that support integration of regula-
tory cues. The interactions of YAP and SMAD
coregulatory proteins with C-terminal seg-
ments of the RUNX2 transcription factor
permits assessment of requirements for recruit-
ment of cSRC andBMP/TGFb-mediated signals
to skeletal target genes. Our findings indicate
that nuclear import of YAP and SMAD coregu-
latory factors is agonist dependent. However,
there is a stringent requirement for fidelity of
RUNX subnuclear targeting for recruitment of
these signaling proteins to transcriptionally
active subnuclear foci. Our results demonstrate
that the interactions and spatial-temporal or-
ganization of RUNX and SMAD as well as YAP
coregulatory proteins are essential for assembly
of transcription machinery that supports ex-
pression of skeletal genes [Zaidi et al., 2002a,b].
Competency for intranuclear trafficking of
RUNX proteins has similarly been functionally
linked with the subnuclear localization and
activity of TLE/Groucho coregulatory proteins
[Javed et al., 2000]. These findings are consis-
tent with proteins serving as a scaffold for
interactions with coregulatory proteins that
contribute to biological control.

In vivo consequences of aberrant intra-
nuclear trafficking of RUNX transcription
factors. Using RUNX2 and its essential role in
osteogenesis as a model, we investigated the
fundamental importance of fidelity of subnuc-
lear localization for tissue differentiating activ-
ity by deleting the intranuclear targeting signal
via homologous recombination. Mice homozy-
gous for the deletion (RUNX2DC) do not form
bone due to perturbed maturation or arrest of
osteoblasts. Heterozygotes do not develop cla-
vicles, but are otherwise normal. These pheno-
types are indistinguishable from those of the
RUNX2 homozygous and heterozygous null
mutants, indicating that the intranuclear tar-
geting signal is a critical determinant for
function. The expressed truncated RUNX2DC
protein enters the nucleus and retains normal
DNA binding activity, but shows complete loss
of intranuclear targeting. These results estab-
lish that the multifunctional N-terminal region

of the RUNX2 protein is not sufficient for
biological activity. Our results demonstrate
that subnuclear localization of RUNX factors
in specific foci together with associated re-
gulatory functions is essential for control of
RUNX-dependent genes involved in tissue
differentiation during embryonic development
[Choi et al., 2001]. The importance of sub-
nuclear localization of RUNX transcription
factors for biological control is further indicated
by compromised subnuclear organization and
activity of RUNX1 hematopoietic regulatory
proteins in acute myelogenous leukemia
[McNeil et al., 1999].

THE REGULATED AND
REGULATORY PARAMETERS OF
SUBNUCLEAR ORGANIZATION

Multiple lines of evidence suggest that com-
ponents of nuclear architecture contribute both
structurally and enzymatically to control gene
expression during osteoblast differentiation.
Sequences have been identified that direct
RUNX transcription factors to nuclear matrix-
associated sites that support transcription in a
cell cycle dependent manner [Young et al.,
2002]. Insight is thereby provided into mechan-
isms linked to the assembly and activities of
subnucleardomainswheretranscriptionoccurs.
In a restricted sense, the foundation has been
provided for experimentally addressing intra-
nuclear trafficking of gene regulatory factors
and control of association with the nuclear
matrix to establish and sustain domains that
are competent for transcription. The unique se-
quences [Zeng et al., 1997, 1998] and crystal
structure for the 31 amino acid nuclear matrix
targeting signal of RUNX transcription factors
[Tang et al., 1998a] supports specificity for
localization at intranuclear sites where the
regulatory machinery for gene expression is
assembled, rendered operative, and/or sup-
pressed. In a broader context, there is a growing
appreciation for involvement of nuclear archi-
tecture in a dynamic and bidirectional exchange
of gene transcripts and regulatory factors be-
tween the nucleus and cytoplasm, as well as
between regions and structures within the
nucleus [Lamond and Earnshaw, 1998; Wei
et al., 1998; Misteli, 2000; Stein et al., 2000b;
Gasser, 2002].

It would be presumptuous to propose a single
model to account for the specific pathways that
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direct transcription factors to sites within the
nucleus that support transcription. However,
findings suggest that parameters of nuclear
architecture functionally interface with compo-
nents of transcriptional control. The involve-
ment ofnuclearmatrix-associated transcription
factors with recruitment of regulatory compo-
nents to modulate transcription remains to be
defined. Working models that serve as frame-
works for experimentally addressing compo-
nents of transcriptional control within the
context of nuclear architecture can be com-
patible with mechanisms that involve archi-
tecturally or activity driven assembly of
transcriptionally active intranuclear foci. The
diversity of targeting signals must be estab-
lished to evaluate the extent to which regula-
tory discrimination is mediated by encoded
intranuclear trafficking signals. It will addi-
tionally be important to biochemically and
mechanistically define the checkpoints, which
are operative during subnuclear distribution of
regulatory factors, and the editing steps, which
are invoked to ensure that structural and
functional fidelity of nuclear domains, where
replication and expression of genes occur. There
is emerging recognition that placement of
regulatory components of gene expressionmust
be temporally and spatially coordinated to
optimally mediate biological control. It is rea-
listic to anticipate that further understanding
of mechanisms that position genes and regula-
tory factors for establishment andmaintenance
of the bone cell phenotype will clarify nuclear
structure-function interrelationships that are
operative during osteoblast differentiation and
vitamin D modulation of regulatory activity.
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